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Abstract—Aquatic animals such as fish evolved to undulate
their bodies to efficiently navigate through water. Extensive
research on natural and synthetic aquatic swimmers found the
relationship between body oscillation kinematics and swimming
speed. Yet an open and challenging inquiry remains: determining
the optimal kinematics to maximize swimming speed within
specific constraints and understanding how a system can modify
its control parameters to achieve this optimality. In this study,
we employ learning algorithms on a biomimetic robotic fish
closely resembling real fish swimming and exhibiting undulatory
motion. The obtained results indicate that there is an optimal
frequency and mode of actuation of a robotic fish, explained
by the interplay between the swimmer dynamics and the fluid-
structure interaction with the surrounding fluid. We provide
a novel methodology and framework for finding an optimal
swimming gait for maximizing the speed of a robotic fish,
using images from top-mounted camera via deep Reinforcement
Learning. Additionally, we present a simplified numerical model
that approximates experimental results, based on first physical
principles.

Index Terms—deep reinforcement learning, robotic fish swim-
ming, optimization, biomimetics, fluid dynamics, computer vision

I. INTRODUCTION

Fish locomotion remains a complex topic due to intersection
of biology and fluid dynamics. Acquatic locomotion and
control mechanisms have been refined through million of
years due to Darwinian evolution [11]. Through years of
evolution, acquatic animals have developed their biological
mechanisms in order to survive, hunt and reproduce. Most
of the swimming is undulatory, where the thrust is produced
by the body undulation pushing water [5]. The kinematics
of acquatic swimming demonstrate remarkable consistency
across vertebrates, highlighting universal physical principles.
Typically, the wavelength of body deformation is comparable
to the swimmer’s length, while the tail beat amplitude is
about 0.2 times the swimmer’s length. The tail beat frequency
(f ) varies with the individual, adjusting to control swimming
speed. A higher frequency results in greater speed [1], [7],
[31], [34], [43]. Swimmer’s can adjust the frequency of tail un-
dulation within a specific range limited by biological muscles
and fluid dynamics of their interaction with the surrounding
water. Muscles have limitations regarding contraction speed
and tension [12]. The limits can also be imposed by the
decision processes that are spontaneous, conscious or through
proprioceptive reflexes. These considerations are reflected in
the design of biomimetic robotic swimmers [21], [22], [32],
[41], [59].

On the one hand, fish have evolved fabulous adaptations to
their habitat, exhibiting diversity in shapes and physiologies
that inspire the development of new technologies. On the
other hand, integrating biomimetic features into aquatic robotic
systems creates favorable opportunities for enhancing the
understanding of fish locomotion. Maneuverability, efficiency
and fish-like appearance distinguish robotic fish from other
underwater robots. The applications of a robotic fish hold
a big promise. Some prominent applications include marine
life observation [18], where robotic fish exhibit fish-like be-
havior without disturbing aquatic world or navigating hardly-
accessible places due to compact fish-like shape. Robotic fish
can also lead real fish school from dangerous zones [29].

The development of efficient and fully autonomous robotic
fish requires identifying control strategies achieving desired
performance under given constraints. The most classical con-
trol approaches applied on a robotic fish include PI [54],
PID [49], and robust controllers [53] have been employed
to improve trajectory tracking performance. Other control
strategies include artificial Central Pattern Generators (CPG)
[44], [46], [50]–[52] to propel robotic fish, and fuzzy logic
[14] to follow the target. Because of the complex nonlinearity
of a robotic fish swimming, recently, there has been a growing
interest in applying Reinforcement Learning (RL) for different
control tasks [4], [30], [45], [55], [58]. Most of this research
work had predefined patterns (harmonic movement or CPG)
and optimized some parameters of the predefined control
pattern via Reinforcement Learning. While certain research
have examined the relationship between swimming speed and
tail beat frequency, no conclusion has been made on the
optimal control necessary to achieve the highest speed. In this
article, we aim to find new insights on the optimal swimming
gait of robotic fish to maximize the swimming speed.

Recently, a number of simulation models have been created
to study fish locomotion. In [26], authors propose a set
of physics-based environments for different modes of fish
locomotion integrated in openai gym deep RL framework.
In [17], the authors implemented a PPO agent to drive a
simulated three-linked fish to a desired location in 2D in a
potential flow, utilizing the sense of proprioception to reach
the destination. In [47], deep RL was employed to propel the
fish in CFD simulation. In [40], the authors present the general
set of fish control benchmarks based on the popular physics-
based simulation engine, mujoco [42]. Later, we present the
modified ”fish” environment from this control suite benchmark
to accomplish our goal of maximizing the swimming speed in



1D.
In [56], [57] researchers implemented sim2real approach

to achieve a path-following control: a policy trained within a
data-driven/CFD simulation was applied on a robotic fish in a
real-world setting. In [58], sim2real approach was applied on
a robotic fish to adjust the attitude angle related to the water
flow using RL. While sim2real approach is robust, it is sub-
optimal due to the ”model bias” experienced in simulation.
Latest advances in model-free deep RL have significantly
improved the speed of learning and permit to apply these
methods directly on robots without any prior modelization
[6], [9], [15], [36], [37]. Here are the key contributions of
this paper:

1) physics-based simulation environment for thrust and
speed maximization with an experimental setup

2) To the best of our knowledge, we present the first work
applying deep RL successfully for fish locomotion task
without prior modelisation. The RL session is capable of
finding the best control frequency. Both simulation and
experimental validation prove that bang-bang control is
optimal.

In the following, we first present RL concepts and some al-
gorithms in section II. Then, section III presents experimental
setup and optimization configuration. We present simulation
and experimental results in section IV. We then conclude with
discussion.

II. DEEP REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a control framework for
discretized dynamical systems. RL exploits the structure of
Markov Decision Process (MDP), which is a discrete-time
stochastic control process. At the discrete time step i, there are
four components in MDP (S,A, P,R): a set of states si ∈ S of
the dynamical system, a set of available actions ai ∈ A that the
system can actuate, unknown dynamics that define transition
probability among the states P ∈ [0, 1] : si × ai → si+1 and
set of emitted rewards ri ∈ R on each transition (si, ai, si+1).
We refer to the internal decision maker i.e an RL algorithm as
an agent, and the whole physical system as an environment.
At each time step i, the agent (algorithm) chooses an action ai
according to the assessed current state si. After the actuation,
the environment provides a new state si+1 and a reward ri+1.
The reward ri+1 serves as a feedback signal to the agent,
indicating the efficacy of the taken action ai at state si.

During the learning process, the agent evolves in the en-
vironment and tries to maximize its cumulative reward Rτ
during certain interaction time horizon [0, T ], which is referred
as an episode or a trajectory τ :

τ = (s0, a0, s1, a1, . . . , sT−1, aT−1, sT )

Rτ =

T−1∑
i=0

γir (si, ai) ,
(1)

where 0 < γ < 1 is the discount factor which measures the
importance of the future unitary reward and serves as a bias-
variance trade-off for Rτ .

We focus on actor-critic methods [28], [39] represented
by neural networks, which alternate between policy
evaluation and improvement. The actor represents the
policy π(a|s) and outputs an action a from state s.
The critic estimates cumulative reward for different
possible actions (Q(s, a)). During policy improvement,
the critic is trained via the following loss function: J(θ) =

E
[(
r(si, ai) + γmaxai+1 Qθ′(si+1, ai+1)−Qθ(si, ai)

)2]
.

We use DROQ [13] for a continuous action setting and PPO
[35] in a discrete action context.

Sample-efficient deep RL: DROQ

DROQ [13] is highly sample-efficient RL due to the high
update-to-data (UTD) ratio of critic. Previous off-policy RL
methods such as SAC [10] and DDPG [25] use UTD ratio
of 1 because using high UTD ratio is prone to overfitting and
requires regularization [23]. To become more sample-efficient,
DROQ performs multiple gradient steps on a critic for every
one environmental step taken. This is supported by [6] that
demonstrates that increasing UTD ratio drastically improves
sample-efficiency. DROQ is an extension of REDQ [3] that
uses high UTD ratio alongside with ensemble of critics as from
of regularization. To adress overfitting, DROQ incorporates
dropout regularization [38] on the RL algorithm’s critics. We
implement an asynchronous actor-critic setup in for the agent
to learn from off-policy replay buffer while interacting with
the environment.

III. EXPERIMENTAL SETUP AND DESIGN CHOICES

Experimental setup description

In our experiments, we use a 3D printed robotic fish rear
body described in [8], [32] and represented in fig. 1b and c.
Fish body features a flexible skeleton with an attached fin at
its end, fabricated through 3D printing with a flexible polymer.
Controlled deformation is achieved using a waterproof servo-
motor (Hitec HS-5086WP), which is linked to the end of the
skeleton via two cables. The rigid head, fabricated from PLA
via 3D printing, incorporates an additional mass of 70 grams
to ensure stability and prevent oscillations of the robotic fish
when moving the tail. The robotic fish is attached to plastic
tube. The robotic fish is connected to a floating plastic tube
(FisherbrandTM 500ml with 53mm diameter), within which all
the electronic components are located. Having a floating tube
on the water surface allows to communicate with the robot
via wi-fi and alleviates the difficulty of the third dimension for
fish swimming. A ”Raspberry pi Zero WH” located in the tube
receives the commands from a PC and controls the servomotor.
We opt to control a robotic fish wirelessly, thus avoiding
dry friction and hanging wires that could potentially impact
the optimal swimming gait we aim to find. Stationary PC
(Alienware-Aurora-R11 with Intel(R) Core(TM) i9-10900F
CPU @ 2.80GHz and GeForce RTX 3080 GPU), performing
gradient-based learning, communicates with a robotic fish
via Wi-Fi protocol. To reduce the possibility of harmonic
pollution, we use separate power supplies for the servo-motor
and the main board. We employ a block of four (1.5 V,



3000mAh) rechargeable batteries to power the servo-motor,
while a separate battery (3.7 V, 1200 mAH) powers the
main card through the ”PiJuice Zero” power module. All the
experiments are conducted within the water tunnel of Rolling
Hills Research Corporation.

RL learning setting

The objective is to swim against a water flow with the
maximum speed possible. The water flow is regulated to
maintain a velocity of 60 mm/s, opposing the fish’s swimming
direction. During the training phase, this specific water flow
rate serves a dual purpose. Firstly, it provides a consistent
opposing force for the robotic fish, effectively simulating the
challenges of swimming upstream. The increased drag force
ensures that only effective control policies are able to propulse
the robotic fish forward. Secondly, the 60 mm/s flow rate
facilitates a rapid and efficient RL environment reset to bring
the fish to the initial position once a learning episode is
terminated. The learning episode is ended by halting the fish
and fish going backwards with the flow of the water tank.
To prevent the fish from becoming immobilized during the
way back due to friction along the reservoir’s boundaries, fish
undulates its tail slightly every three seconds. Once the camera
detects a certain position threshold near the start is overcome,
the fish restarts the new episode again. Small 3D-printed blue
piece of a ”triangular” shape is mounted at the beginning of the
track, so that the robotic fish starts the episode in a consistent
position relative to the reservoir.

An overhead web-camera (Razer Kiyo X) captures the
robotic fish movements [see example image in fig. 1a]. Learn-
ing from raw images can be hard and time consuming due
to the high-dimensionality of images [20]. To simplify and
accelerate the learning process, we implement the marker-
based approach of extracting useful features from images
[27] by affixing yellow and red markers to the buoyant
cylinder. One marker suffices to determine an object’s position
precisely; however, inferring the orientation of a robot requires
at least two markers. This approach eliminates the use of
high-dimensional input images and utilizes useful and latent
information directly in RL algorithms. To detect the points, we
convert the RGB image to HSV color space, and then color
thresholding combined with noise filtering through image
erosion followed by dilation. The servomotor consign angle φc
is concatenated with extracted positions of two points, forming
a ’base’ observation vector. This adds the estimation of the fin
deflection angle. To deal with the partial observability of the
system, four consecutive ’base’ vectors form a state for an
RL agent. So, the resulting observation vector at time step i
consists of [φci, cxi, cyi, pxi, pyi]×4, where (cxi, cyi) are the
coordinates of one marker in 2-dimensional space at the time
step i and (pxi, pyi) are the coordinates of the second point.

The agent-environment interaction during learning occurs
in episodes spanning 128 time steps, each with a sampling
interval of 50 ms. The episode time of 128 time steps ensures
that the robotic fish always stays in the camera vision field
and the 50 ms sampling time guarantees consistent Wi-Fi data

exchanges. The episode stops upon reaching the maximum
time step count. To be robust to white noise and perturbations,
the reward at each time step is defined as a moving-average
velocity (ẋ) over 1s time interval in the x direction [see
fig. 1a].

Fig. 1. Experimental setup for a robotic fish swimming in a water tunnel.
a) View on the fish from above. The use of two markers permit to define the
position of the swimmer, as well as its body angle orientation with respect to
the flowing water direction. b) Side view of the setup: floater with electronics,
servomotor and elastic fin. c) Zoom on inside of a robotic fish. Servomotor
actuates the elastic fin of a robot fish via the fishing wires, which in turn
propels the entire system against the direction of the flow.



IV. RESULTS

A. Simulation

There is another way to fit ALL parameters through
bayesian optimization. same principle for fitting hyperparam-
eters of deep learning algorithms [look optuna example]. it
may fit better, but the resulting parameters may not have a
physical sense. Before moving with experiments, we construct
an approximate physical model for testing different modes
of learning and tuning hyperparameters. We hereby aim to
optimize the simulated robotic fish swimming speed in 1D
and follow OpenAI Gym framework for learning [2].

Simulation model of fish swimming: In this simulated
environment, the equations governing the motion dynamics
of the robotic fish rely on the models of fish locomotion
described in [32], [33]. Servomotor control is defined as a
consign angular position of a servomotor φc ∈ [−Φ,Φ], where
Φ is a maximum instruction angle. A servomotor tries to adjust
its real angle φ to the consign φc and its internal dynamics
are described in eq. (2). The servomotor head is attached
tightly to the fish fin via two elastic threads. This attachment
is characterized by linear coefficient λ = 0.46. The dynamics
of the fish tail flapping is modeled as a damped harmonic
oscillator in eq. (4) with ξ a dissipation coefficient and ω0

a proper frequency. The full derivation of these equations
is available in [32], [33]. When fish undulates its body, it
pushes water and produces thrust driving itself forward. The
fish movement is governed by eq. (5), where the fish body is
affected by the thrust force (−Ctα̈α) and the drag (−Cd|ẋ|ẋ).

φ̇(t) = Ω tanh

(
1

∆
(φc(t)− φ(t))

)
, (2)

αc(t) = λφ, (3)

α̈(t) + ξω0α̇(t) + ω2
0 (α(t)− αc(t)) = 0, (4)

ẍ = (−Cd|ẋ|ẋ− Ctα̈α)/m. (5)

The process of determining parameters through fitting is
carried out using both linear regression and nonlinear fitting
techniques, specifically employing the lmfit1 library for the
latter. Initially, the robotic fish is actuated using different
control angles: φc = 20◦, 40◦, 50◦ and at various frequencies
in the interval f = [0.2, 1.2]. The procedure is divided into
following steps:

1) The proportionality factor (between α and φ) λ = 0.46
is determined in quasi-static experiments i.e. for experi-
ments conducted at low frequency square wave forcing.

2) From [32], the mean thrust force is defined as Fx =
−KT

∫ T
0
α(t)α̈(t)dt = K

T

∫ T
0
α̇(t)2dt. It is proportional

to ω2α? 2
max. We employ ridge linear regression to fit the

coefficient Ct in eq. (5), setting Fx as a function of
ω2α? 2

max [see fig. 2b].
3) The corresponding maximum fin deflection angle α?max

is measured from the videos recorded of fin oscillating
at these different angle amplitudes and frequencies [see

1https://lmfit.github.io/lmfit-py/

fig. 3]. This maximum angle α?max is then used in the
next step.

4) With a pre-defined range for physically plausible values
of different parameters, we proceed with nonlinear fit
of the parameters Ω,∆ of eq. (2) and ξ, ω0 of eq. (4)
on the experimental data. The result of the fit can be
visualized in fig. 2b.

5) We fit Cd from the second order polynomial fit.

Fig. 2. Parameters fitting results comparison with actual data. a) Fit of
parameter Ct = 12.9 10−3 N.rad−2.s2 in equation eq. (4) via linear
regression b) Superposition of measured angle of the fish fin undulation and
prediction by the model. The data from three servo-motor actuation angles
(φc = 20◦, 40◦, 50◦) and 6 different frequencies (f ∈ [0.2, 1.2]) were used
to find the parameters Ω = 5.8 rad.s−1, ∆ = 0.29 rad, ω0 = 12.5 rad.s−1

and ξ = 1.2.

Fig. 3. DRAFTMean image obtained from averaging of images from video
recording of several tail undulations. Example of determining two times α?

max
from mean image. The angle is measured from the static marker near the end
of caudal fin.

Simulation results: After constructing the simulator with
the above dynamics, we add a simple visualization of move-
ment that depends on both linear movement x and fin de-
flection angle α [see fig. 4a and b]. Here, we distinguish
between two distinct observation modalities for learning. The
first category includes the actual true sensor state, denoted by
[x, ẋ, α, α̇], while the second one consists of the processed
image of the simulator [see fig. 4a]. The state of the system
is updated using the backward Euler integration scheme with
a sampling time step of 20 ms.

All the following learning simulation results are based on
the continuous action space φc ∈ [−60◦, 60◦], with all results
being shown in dimensionless units.



Fig. 4. Visualization from the simulator with size (400, 800). The thin brown
rectangle represents the tail, the black rectangle with two red circles represents
the fish body. For visual control, this input is sampled every sampling time
and is then rescaled to (84, 84). a) raw image b) annotated for visualization
purposes of x and α.

Before applying deep RL in simulation, we enforced three
types of classical periodic control functions (sinusoidal, trian-
gular and square wave) for a given Φ and measured the average
speed ẋ as a function of frequency f during one episode.
Results are shown in fig. 5. Square wave forcing consistently
outperforms other functions for speed maximization. We then
perform deep RL learning using either images or true state for
observations. Both modalities were suitable for learning and
inference results are presented in fig. 6.

In our simulations, we applied PPO [35] on learning with
from true state, while we used DrQv2 [48] for learning from
images. DrQv2 is a SOTA model-free deep RL algorithm
to learn from images incorporating data augmentation and
enhanced actor-critic update scheme based on [25].

Learning from true state converges rapidly to the optimal
policy [see fig. 6a]. The resulting swimming gait in a square
wave control also known as ”bang-bang” control which arises
as an optimal control in many mechatronic systems [19].
We can also confirm that PPO was able to find the optimal
frequency, while DrQv2 a near optimal one. We now proceed
with another simulation based on a popular physics engine,
mujoco [42].
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Fig. 5. Influence of frequency on episodic return in a custom fish swimming
environment. The enforced swimming gaits consist of predefined functions:
square wave (orange), sinusoidal (blue) and triangular (green) functions with
frequency range f ∈ [0.1, 5] Hz. The red circle is the learning results from
DrQv2 on the visual data (PPO could not learn from visual data in a reasonable
time). The star signifies the best inference return from the PPO training on
the true state [x, ẋ, α, α̇].

Physics-engine based simulation: We adapted a fish envi-
ronment from [40] based on a mujoco engine to be constrained
in 1D. The modified version can be visualized in fig. 7.
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Fig. 6. Evaluation curve of learning via a) PPO algorithm trained on true state
[x, ẋ, α, α̇] b) DrQv2 algorithm trained on processed images of a simulator.
The curve represents the algorithm’s evaluation score every 5000 time steps.

This fish is a rigid body with a two-link tail. One part of
the tail (small oval) is actuated and another is compliant.
This closely approximates the dynamics of a robot fish in
fig. 5, when the motor actuates the upper part of the tail and
another one remaining compliant. As before, to get the first
insight onto the control of this fish, we apply three classical
functions for actuation and record mean forward speed over a
specified duration. These velocities are plotted as a function
of frequency in fig. 8, revealing a consistent trend with earlier
simulations based on custom dynamics. Namely, the square
wave control outperforms other functions and a peak frequency
in forcing exist which can be rationalized due to the fin
elasticity (compliant part).

Partial conclusion: We have got useful insights into
expected behavior of the system and we now proceed with
experiments. We found the ”bang-bang” control optimality
with the peak forcing frequency rationalized by the body
elasticity. The hyperparameters used in experimental part were
tuned through hyperparameter search in simulation. Finally,
simulations with true state of the system tend to be faster,
with a slightly better performance.

Fig. 7. Example image of physics-based fish environment using mujoco
engine [42]: a) top view (used for RL training) b) side-view.

B. Experimental results: speed maximization

We now impose predefined policies (sinusoidal, triangular
and square wave) on the robot in fig. 5b and plot mean speed
ẋ during 1 episode as a function of frequency f . The result
is represented in fig. 9 for Φ = 30◦, 20◦. In the conducted
experiments, sinusoidal and triangular waveforms are inferior
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Fig. 8. Simulation results of the fish 1D swimming environment using mujoco
engine. It can be deduced that the square wave control is the most effective,
surpassing both the sinusoidal and the triangular forcings. DrQ-v2 was able
to learn the square wave forcing of the fish from visual data, but failed to
optimize the frequency, which is rationalized by the low visibility of the fin
from the top view.

to square wave control for most of the cases. Yet, for Φ = 30◦

the maximum speed is achieved independent of the signal form
due to the hardware limitations of servomotor to follow large
Φ at high frequencies.

Learning with continuous action space: We use DROQ
actor-critic algorithm to optimize the swimming speed with 20
UTD ratio for critic and 0.05 dropout rate. The action space
consists of φc ∈ [−Φ,Φ]. The learning curve increases rapidly
and the agent was able to rapidly learn how to oscillate the
fin harmonically and swim in a straight line. The learning
curve and inference evaluation are represented in fig. 10.
We performed the RL training for different Φ = {20◦, 30◦}
that are compared to predefined control policies in fig. 9.
The control frequency was found through Fourier frequency
analysis.

Discrete action space: We employ PPO [35] actor-critic
algorithm with φc ∈ {−Φ, 0,Φ}, with Φ = 40◦. Because
actions are discrete, only triangular or square wave forcing
are possible. The inference results are shown in fig. 11, where
PPO was successful to find square wave policy. To validate
RL findings, we compare RL inference frequency with square
wave forcing depicted in fig. 12. RL is able to find near
optimal frequency that is limited by the coarse granularity of
the sampling interval.

We also compare the found optimal control with thrust
force maximization following the protocol described in [16].
When we conducted forward thrust optimization experiments
using the same robotic fish in a static condition with the
bi-directional force sensor, we observed that the optimal
frequencies around 2 Hz. While maximizing the thrust force is
equivalent to maximizing the speed from the physical perspec-
tive, this simplified perspective neglects a nuanced physical
phenomena that can come into play in experiments. Primarily,
the undulatory motion of a fish’s tail generates waves that
propagate through the water, altering flow conditions and
potentially influencing the fish’s movement [24]. The wave

Fig. 9. Influence of the frequency on the speed ẋ by some periodic control
functions: square (orange squares), sinusoidal (blue circles) and triangular
(green triangles) waves. We plot mean and standard deviation on three test
episodes.
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Fig. 10. Data for Φ = 30◦ a) Learning curve. b) Highest return actions and
rewards.

propagation (referred as sloshing) in the water tunnel is highly
dependent on the geometry and the size of a fish and the tank.
While this physical phenomena is well present in practice, it
is difficult to model it in simulation.
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Fig. 11. Experimental results of PPO inference for a robotic fish swimming in
a water tunnel after 120000 time steps with sampling time of 50 ms. The base
frequency is 4 sampling times, which translates to the actuation frequency of
f=2.74 Hz.

Discussions

We have successfully demonstrated that the mean speed
of a robotic fish can be optimized using the visual data and
predetermined markers on a fish body. The main purpose of
putting the markers is to indicate the useful features from
high-dimensional images without training a feature extractor.
Having already processed information from images should
boost the training speed. To add the information about fish
fin undulation, we fuse the command φc with the features
extracted from the image to compose the observation. We
apply three preset control policies to propulse the robotic fish
and clearly observe the optimal forcing frequency.
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Fig. 12. done with other camera in december, I will normalize to match
current results. Comparison of different approaches for finding an optimal
swimming gait. Blue symbols corresponds to forcing with square wave
policy, the discontinuous red line to the optimal frequency found of thrust
optimization and red symbol to the speed maximization via RL.

V. CONCLUSION

In this article, reinforcement learning approach of fish
swimming gait optimization is presented. We discuss different
methods and their applicability both in simulation and exper-
iments. The proposed simulation model closely approximates

the dynamics of a real robot fish movements from physical
perspective. This model served as an algorithm validation
and hyperparameter optimization tool before proceeding with
experiments. Fish locomotion and robot fish control are chal-
lenging topics and we believe that this work sheds new insights
on optimal swimming gaits for designing more efficient robotic
fish movements.

ACKNOWLEDGMENT

REFERENCES

[1] Richard Bainbridge. The speed of swimming of fish as related to size and
to the frequency and amplitude of the tail beat. Journal of experimental
biology, 35(1):109–133, 1958.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[3] Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized
ensembled double q-learning: Learning fast without a model. arXiv
preprint arXiv:2101.05982, 2021.

[4] Zhiwei Chen, Jiahui Wang, Xin Wang, Yufei Zhao, Xu Li, and Yang
Liu. Design and control of soft biomimetic pangasius fish robot using fin
ray effect and reinforcement learning. Scientific Reports, 12(1):21861,
2022.

[5] Stephen Childress. Mechanics ofswimming and flying. Number 2.
Cambridge University Press, 1981.

[6] Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon,
Marc G Bellemare, and Aaron Courville. Sample-efficient reinforcement
learning by breaking the replay ratio barrier. In Deep Reinforcement
Learning Workshop NeurIPS 2022, 2022.

[7] Mattia Gazzola, Médéric Argentina, and Lakshminarayanan Mahadevan.
Scaling macroscopic aquatic locomotion. Nature Physics, 10(10):758–
761, 2014.

[8] Florence Gibouin, Christophe Raufaste, Yann Bouret, and Médéric
Argentina. Study of the thrust–drag balance with a swimming robotic
fish. Physics of Fluids, 30(9):091901, 2018.

[9] Abhishek Gupta, Justin Yu, Tony Z Zhao, Vikash Kumar, Aaron
Rovinsky, Kelvin Xu, Thomas Devlin, and Sergey Levine. Reset-
free reinforcement learning via multi-task learning: Learning dexterous
manipulation behaviors without human intervention. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages
6664–6671. IEEE, 2021.

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In 35th International Conference on Machine
Learning, ICML 2018, 2018.

[11] Kevin Healy, Thomas HG Ezard, Owen R Jones, Roberto Salguero-
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